Trees with equal total domination and 2-rainbow domination numbers
نویسندگان
چکیده
منابع مشابه
Trees with equal total domination and game total domination numbers
In this paper, we continue the study of the total domination game in graphs introduced in [Graphs Combin. 31(5) (2015), 1453–1462], where the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices totally dominated, where a vertex totally dominates another vertex if they are neighbors. This process eventually produces a t...
متن کاملTrees with Equal Total Domination and Total Restrained Domination Numbers
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
متن کاملTrees with Equal Restrained Domination and Total Restrained Domination Numbers
For a graph G = (V,E), a set D ⊆ V (G) is a total restrained dominating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V (G) is a restrained dominating set if it is a dominating set and 〈V (G) − D〉 does not contain an isolated vertex. Th...
متن کاملA characterization of trees with equal Roman 2-domination and Roman domination numbers
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
متن کاملOn trees with equal Roman domination and outer-independent Roman domination numbers
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2018
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1802599s